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ABSTRACT
Since its proposal in 2013, geo-indistinguishability has been consol-

idated as a formal notion of location privacy, generating a rich body

of literature building on this idea. A problem with most of these

follow-up works is that they blindly rely on geo-indistinguishability

to provide location privacy, ignoring the numerical interpretation

of this privacy guarantee. In this paper, we provide an alternative

formulation of geo-indistinguishability as an adversary error, and

use it to show that the privacy vs. utility trade-off that can be ob-

tained is not as appealing as implied by the literature. We also show

that although geo-indistinguishability guarantees a lower bound

on the adversary’s error, this comes at the cost of achieving poorer

performance than other noise generation mechanisms in terms of

average error, and enabling the possibility of exposing obfuscated

locations that are useless from the quality of service point of view.
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1 INTRODUCTION
Geo-indistinguishability (GeoInd), a formal notion of location pri-

vacy introduced in [2], builds on the concept of differential pri-

vacy [7] to design user-centric location privacy-preserving mech-

anisms. To gain privacy while preserving some utility, in these

mechanisms users report to service providers obfuscated versions

of their actual locations. GeoInd guarantees that obfuscated loca-

tions are statistically indistinguishable from other locations within

a radius around the users’ real location. One of the most appealing

features of GeoInd, inherited from differential privacy, is that it

guarantees that, regardless of any side-information about the user

she might have, the adversary learns little additional information

about the real location from observing the obfuscated version.

Since its proposal [2], GeoInd has drawn a lot of attention from

the research community. A first research line extends this notion

to consider mobility traces instead of single locations [5, 10], or to

consider semantic and geographic privacy [6]. Some works focus

on how to use GeoInd, or on integrating GeoInd with other pri-

vacy metrics [9, 11] to design optimal location privacy-preserving

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WPES’17, October 30, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5175-1/17/10. . . $15.00

https://doi.org/10.1145/3139550.3139555

mechanisms, either in simplified [3] or realistic [4] scenarios. Fi-

nally, GeoInd has been also used to implement plugins to sanitize

locations for its use by other mobile applications [8] or browsers [1].

A common issue in these works is that they chooseGeoInd based
on its core qualitative advantage, namely that it provides protection

for the users in a region around their real location regardless of the

adversary’s side-information. However, they do not evaluate and

reason quantitatively about how much protection the mechanisms

provide, i.e., if the level of privacy they achieve is meaningful.

In this work, we illustrate that GeoInd can be misleading both in

terms of privacy and utility. We propose an alternative definition of

this privacy notion as an adversary’s error, and study numerically

the privacy level provided by the state-of-the-art mechanisms that

guarantee this property. We also examine the trade-off between

privacy and utility, showing that even though GeoInd mechanisms

ensure a minimum privacy protection, this comes at the expense

of performing poorly in terms of average protection, and possibly

generating an obfuscated location very far away from the user.

2 GEO-INDISTINGUISHABILITY
We first describe the operation of user-centric perturbation-based

sporadic location privacy mechanisms. Consider a user, Alice, that

wants to get some service from a service provider from her real

location x ∈ X. Before exposing her location to the provider, Alice

uses a location privacy mechanism f to generate an obfuscated lo-

cation z ∈ Z, with probability f (z |x ).X andZ are sets of locations

that we assume discrete for notational simplicity, although we note

that all the results in this paper are applicable to the continuous

scenario. By using mechanism f , Alice trades in utility for privacy.

For example, if Alice’s query is “give me the bars in a radius of 100

meters from my location”, releasing an obfuscated location z away
from x might result in bars that are far away from her, but also pro-

tects her location since the probabilistic nature of the mechanism

f prevents the adversary from learning her true location x .
We define the multiplicative distance between two distributions

σ1 (s ) and σ2 (s ) on a set S as dP (σ1 (s ),σ2 (s )) � sups ∈S
����log

σ1 (s )
σ2 (s )

����
with the convention that

����log
σ1 (s )
σ2 (s )

���� is 0 if σ1 (s ) = σ2 (s ) = 0 and∞

if only one of the two is 0.

In this scenario, geo-indistinguishability is defined as [2]:

Definition 2.1 (ϵ-Geo-Indistinguishability). A mechanism f pro-

vides ϵ-geo-indistinguishability if and only if, for all input locations
x ,x ′ ∈ X, the following holds

dP ( f (z |x ), f (z |x
′)) ≤ ϵ · d (x ,x ′) , (1)

where d (x ,x ′) is the Euclidean distance between x and x ′.

The rationale behind this privacy notion is the following: by

bounding the multiplicative distance, we ensure that the probability

that Alice reports z when she is in x is similar to the probability

https://doi.org/10.1145/3139550.3139555
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that she reports z when she is in x ′ (up to a multiplicative factor of

eϵ ·d (x,x
′)
). Therefore, an adversary observing z cannot statistically

distinguish between x and x ′ as Alice’s real location. The upper
bound in (1) depends on d (x ,x ′) and ϵ . The former dependence

is very intuitive: given an obfuscated location z, two locations

x ,x ′ ∈ X that are very close result harder to distinguish (i.e., f (z |x )
is close to f (z |x ′)) than if they were further apart. The role of ϵ ,
on the other hand, is to tune the degree of GeoInd. Smaller values

of this parameter ensure that f (z |x ) and f (z |x ′) are closer, and

therefore provide a higher degree of privacy than larger values.

Prior-Agnostic Protection. GeoInd provides a privacy guaran-

tee independent of any side information about x the adversary

might have. Let π (x ) be a probability mass function over x ∈ X
representing the prior adversary’s side information about Alice’s

real location x . After observing z, the adversary can update her

knowledge by computing the posterior probability mass function

p (x |z) =
f (z |x ) · π (x )∑

x ′∈X f (z |x ′) · π (x ′)
. (2)

By using (1) and (2), it is easy to show that GeoInd implies

dP (p (x |z),π (x )) ≤ ϵ · d (π ) , (3)

where d (π ) is the maximum distance between two locations x and

x ′ such that π (x ) > 0 and π (x ′) > 0. In other words, GeoInd en-

sures a certain degree of similarity between the adversary’s prior

and posterior information about Alice’s real location, for any prior

π . Note that GeoInd is not an absolute privacy guarantee, but only

ensures that given z the adversary gets no significant extra accuracy
with respect to the prior. However, if given this prior the adversary

can pinpoint a user’s location to a small region in the map (small

d (π )), then even though z does reveal little information about x ,
the adversary’s estimation of x will still be accurate.

Choosing the Privacy Parameter. The general approach to se-

lecting a proper value for the parameter ϵ is to pick a privacy level
ϵ∗ and a privacy radius r∗, and set ϵ = ϵ∗/r∗. This ensures that,
when Alice is in x and releases z, her location is statistically indis-

tinguishable from all the other locations x ′ within a radius of r∗

around her, i.e., dP ( f (z |x ), f (z |x
′)) ≤ ϵ∗ as in (1).

Quantitatively, however, it is hard to determine if a bound on the

multiplicative distance ϵ∗ gives “enough privacy”. This is reflected

in the literature, where there is no consensus about which value of

the bound in (1) denotes a high degree of indistinguishability. In

the seminal paper [2], Andrés et. al choose ϵ∗ = log 2 in a radius of

r = 200 meters as the highest privacy level. This bound is used by

some follow-up works [1, 6], while others take different values of

ϵ∗, ranging from ϵ∗ = log 10 [5] to ϵ∗ = log 1.4 [4].

3 GEOIND AS AN ADVERSARY ERROR
In this section, we introduce an alternative characterization of

GeoInd as an adversary error. This characterization helps us in

providing more intuition behind the privacy level obtained for a

specific value of the privacy parameter ϵ , and in understanding the

protection it provides beyond the upper bound expressed in (1).

Consider that the adversary’s side information is that Alice is

equally likely in either of two locationsx andx ′, i.e., π (x ) = π (x ′) =
0.5. After observing z, the adversary has to decide between x and x ′.

We refer to this adversary as the decision adversary. Assume, with-

out loss of generality, that f (z |x ) ≥ f (z |x ′), and thus the optimal

decision in terms of minimizing the adversary’s probability of error

is deciding that Alice’s location is x . In this case, the adversary’s

probability of error is

pe (x ,x
′,z) =

f (z |x ′)

f (z |x ) + f (z |x ′)
. (4)

Then, Geo-indistinguishability can be defined as follows:

Lemma 3.1 (ϵ-Geo-Indistinguishability as error). A mecha-
nism f guarantees ϵ- geo-indistinguishability if and only if, for any
pair of input locations x ,x ′ ∈ X and any output location z ∈ Z,
it ensures that the minimum probability of error p∗e of the decision
adversary described above is

pe (x ,x
′,z) ≥ p∗e =

1

1 + eϵ ·d (x,x
′)
. (5)

It is easy to see that the GeoInd definitions in (1) and (5) are

equivalent by substituting (4) in (5) and operating. We have chosen

π (x ) = π (x ′) = 0.5 as prior knowledge for the decision adversary,

as this ensures the guarantee in (1), but we note that when π (x ) ,
π (x ′) GeoInd does not guarantee a minimum probability of error

against this adversary.

This alternative definition of GeoInd allows us to intuitively

interpret the privacy guarantee achieved by f . For example, given

ϵ = 2km
−1

and two locations x and x ′ separated d (x ,x ′) = 0.5km,

according to (1) the multiplicative distance between f (z |x ) and
f (z |x ′) is bounded by 1. However, whether an upper bound on the

multiplicative distance of 1 is a reasonable level of protection is not

clear. In terms of probability of error, (5) bounds the adversary’s

error to be pe ≥ p∗e = 0.27: before observing z the decision adver-

sary has a probability of correctly guessing Alice’s input location of

0.5, and after the release her probability of success is in the worst

case 0.73. It is difficult to consider this worst case probability as

“high indistinguishability”, which contradicts the GeoInd idea of

achieving indistinguishability for every pair of input locations. We

explore the implications of this interpretation in the next section.

4 GEOIND IN NUMBERS
In this section, we quantitatively evaluate the privacy and utility

achieved byGeoIndmechanisms. For privacy, given a fixed distance

between two locations x and x ′, we measure both the upper bound

on the multiplicative distance in (1), ϵ∗ = ϵ · d (x ,x ′), and the lower
bound on the probability of error (4) of the decision adversary, p∗e .
For utility we consider two metrics: the average loss r, measured as

the average Euclidean distance between the actual location of the

user x and the obfuscated location z [3, 4, 6, 9–11], and the radius

of the circular region centered around x where z is with probability

0.95, denoted by r95 [1].
We evaluate two GeoInd mechanisms. First, the planar Laplace

mechanism, proposed in the seminal work [2], implemented in [1, 8],

and used as a baseline for comparison in [3, 4]. This mechanism gen-

erates obfuscated locations z from the actual location x by adding

2-dimensional Laplace noise to the latter. Second, the planar Laplace

with remapping [4], current state-of-the-art. This mechanism first

generates a temporary location z′ by adding 2-dimensional Laplace

noise to x , and then performs a deterministic remapping from z′ to
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Figure 1: Performance of the Planar Laplace mechanism.

z that is designed to minimize the average loss r of the scheme while

providing the same privacy guarantees as the original version. This

remapping is computed using a dataset with information about the

popularity of each input location x ∈ X, and therefore the mecha-

nism is tied to a particular dataset. We leave optimal mechanisms

that can only be implemented in simple discrete scenarios [3, 9, 11]

out of our evaluation, as the low-resolution quantization needed to

implement them in a real scenario makes them suboptimal (cf. [4]).

Planar LaplaceMechanism.Given a privacy value ϵ , the average
loss of the Laplace mechanism is r = 2/ϵ , and r95 can be computed

analytically using the Lambert W function (cf. [2]). The value of

p∗e can be computed from ϵ following (5). We show p∗e and ϵ∗ for
this mechanism, when locations are separated d (x ,x ′) meters, in

Figure 1 for different utility levels. As expected, as we add more

noise (larger r or r95), protection improves (larger p∗e or smaller ϵ∗).
To better understand the trade-off between privacy and utility let

us consider as reference a privacy level p∗e = 0.4 (i.e., the decision

adversary succeeds at most 60% of the times). To obtain such pro-

tection level in a radius of r∗ one needs to add Laplacian noise with

average loss of r ≈ 5r∗. This results 5% of the time on an obfuscated

location z further than r95 ≈ 12r∗ from the real location x . Consider
that we want p∗e = 0.4 in locations within a radius of r∗ = 200m.

In this case, the obfuscated location would be on average r = 1km

away from the real location, and 5% of the time it would be further

than 2.3km away (yellow line in Fig. 1). In applications that are

not sensitive to large amounts of noise (e.g., weather forecast) this

might be reasonable. However, in other applications where one

would require a utility in the same order of magnitude as the pri-

vacy protection (e.g., finding nearby points of interest), the Laplace

mechanism and, up to some extent, GeoInd, are not desirable.

Planar Laplace with Optimal Remapping. Since this mecha-

nism cannot be evaluated analytically, we follow the empirical

approach in [4]: we use 80% of the users from Gowalla dataset
1

to design the remapping function, and use the remaining 12 112

users as a testing set to evaluate the utility of the mechanism after

remapping. We generate an output z for 20 000 random checkins

from testing set users, for values of ϵ from the previous experiment

(ϵ = {6.67,4,2,1}, in km
−1
), and use them to compute r and r95.

1
https://snap.stanford.edu/data/loc-gowalla.html

The results in terms of p∗e and ϵ∗ vs. d (x ,x ′) coincide with the ones

in Fig. 1, but we obtain much better quality: r = 159, 266, 578 and

1271 meters, i.e., 37 − 47% smaller than plain Laplace. The 95% loss

percentile in each case is r95 = 565, 999, 2146, and 4162 meters,

which is only a 10− 21% reduction from the planar Laplace without

remapping. To obtain a protection of p∗e = 0.4 in a radius of r∗

around the real location, in this scenario one needs to add noise

with a loss of roughly r ≈ 3r∗ and r95 ≈ 10r∗. Although the average

loss reduction is considerable, the utility cost is still large com-

pared to the radius of the privacy region this mechanism ensures.

This highlights the importance of analyzing GeoInd numerically to

understand the actual privacy vs. utility trade-off it provides.

5 OTHER PROPERTIES OF GEOIND
So far we have studied the lower bound (p∗e ) GeoInd mechanisms

provide on the probability of error of the decision adversary (pe ).
We now study other properties of GeoInd mechanisms against this

adversary. For this purpose, we evaluate three mechanisms: the

planar Laplace mechanism, described above, and the Gaussian and

uniform circular mechanisms. The latter mechanisms generate z by
adding to the real location x , respectively, 2-dimensional Gaussian

noise and uniform noise in a circle. We choose not to use remap-

ping, as its improvement would be similar for all mechanisms and

thus does not influence the comparison. For each experiment, we

consider two locations x and x ′ separated a distance d (x ,x ′) and
generate z using the three mechanisms. Then, we measure the prob-

ability of error of the decision adversary pe in that realization, and

repeat this 20 000 times for different values of d (x ,x ′) and r.

The average probability of error of these mechanisms, denoted

by pe and computed by averaging the 20 000 samples of pe , is
shown in Figure 2. Given an average loss r, both Gaussian and

circular mechanisms achieve a larger average error than the Laplace

mechanism, up to a certain distance d (x ,x ′) marked with • in

the figure. We do not show these marks for r = 1000 and r =

2000, but they also lay close to pe = 0.1. At these points, the

Laplace mechanism achieves p∗e ≈ 0.01 and pe ≈ 0.1 for all tested

values of r. The fact that the Laplace mechanism performs better

from • onwards is not significant: in these scenarios, regardless of

the mechanism, the adversary guesses the right location with an

average probability larger than 0.9, i.e., no mechanism provides

privacy. We conclude that, in all relevant scenarios (i.e., reasonable

privacy levels), the Gaussian and circular mechanisms achieve a

larger average error than the Laplace mechanism. This means that

using GeoInd as a way of providing an average protection level
against an adversary with unknown side-information [9, 11] is not

recommended, as it is not the guarantee that this notion provides.

Figure 3 shows the percentage out of the 20 000 realizations

where the Gaussian and circular mechanisms achieve a larger pe
than the Laplace mechanism.We see that these mechanisms achieve

a larger probability of error more often than the Laplace mechanism

when x and x ′ are separated up to a distance d (x ,x ′) corresponding
to the points marked with ■ (Gaussian) and ▲ (circular). The figure

also shows the performance of the Laplace mechanism in terms of

p∗e andpe at these points (these values remain almost constant when

changing r). Similarly to the previous case, these values represent

a very low privacy regime, i.e., for all reasonable privacy levels,

https://snap.stanford.edu/data/loc-gowalla.html
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the Gaussian and circular mechanisms are more likely to achieve a

larger pe than the Laplace mechanism. This is better illustrated in

Figure 4, which shows the normalized histogram of the probability

of error pe provided by the Gaussian and Laplace mechanisms for

d (x ,x ′) = 100m and r = 500m. As expected, the Laplace mechanism

ensures a minimum probability of error (p∗e = 0.4), but is not able

to achieve large probabilities of error as often as the Gaussian

mechanism. These experiments reinforce the idea thatGeoInd is not
a “cure-all” privacy guarantee against a prior-agnostic adversary.

All the above experiments compare mechanisms offering the

same average loss r. In terms of r95, the Laplace mechanism (r95 ≈
2.37r) performs worse than the circular (r95 ≈ 1.46r) and the Gauss-

ian (r95 ≈ 1.95r) alternatives. Thus, compared with a fixed r95, the
Laplace mechanism would perform even worse than the others.

6 WHERE TO GO NOW
Geo-indistinguishability, which provides differential privacy-like

guarantees in the location privacy scenario, has drawn a lot of

attention from the community. However, our quantitative evalu-

ation shows that the (worst-case or average) privacy guarantees

it provides are unsatisfying unless utility is sacrificed. The main

reason for this poor performance is that, in the counting queries

on a database scenario where differential privacy was initially pro-

posed [7], queries have low sensitivity, i.e., the contribution of a

single user does not significantly affect the outcome. This enables

the achievement of a high privacy level (e.g., ϵ∗ = 0.01) without

introducing much noise, thus preserving utility. In the location sce-

nario where Geo-indistinguishability operates, each query has high

sensitivity and therefore requires large noise to provide protection.

For instance, to achieve GeoInd with ϵ∗ = 0.01 between locations

in an area of 100m, the average loss is 20km. Moreover, GeoInd can

only be achieved at the expense of having an unbounded maximum
quality loss since the guarantee (1) no longer holds if the mechanism

is truncated to ensure a minimum utility for the users.

This does not mean that GeoInd should be abandoned, but we

argue that it should be carefully configured, understanding the type

and amount of protection it provides. Our GeoInd characteriza-

tion as an adversary error should assist in this task, as it helps to

quantitatively interpret the degree of protection provided. We have

also shown that in some scenarios there are levels of protection

that are not achievable without unreasonable utility loss. Potential

solutions could be to use bandwidth as a resource to improve util-

ity [2], or re-design location queries to have lower sensitivity (e.g.,

aggregating queries [7] locally, at the user level).
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